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Abstract—Given the ever-expanding scale of WiFi deployments
in metropolitan areas, we have reached the point where accurate
GPS-free outdoor localization becomes possible by relying solely
on the WiFi infrastructure. Nevertheless, the existing industrial
practices do not seem to have the right implementation to achieve
an adequate accuracy, while the academic researches that are
mostly attracted by indoor localization have largely neglected
this outdoor aspect. In this paper, we propose WOLoc (WiFi-only
Outdoor Localization) as a solution that offers meter-level accu-
racy, by holistically treating the large number of WiFi hotspot
labels gather by crowdsensing. On one hand, we do not take these
labels as fingerprints as it is almost impossible to extend indoor
localization mechanisms by fingerprinting metropolitan areas.
On the other hand, we avoid the over-simplified local synthesis
methods (e.g., centroid) that significantly lose the information
contained in the labels. Instead, we accommodate all the labeled
and unlabeled data for a given area using a semi-supervised
manifold learning technique, and the output concerning the
unlabeled part will become the estimated locations for both
users and WiFi hotspots. We conduct extensive experiments with
WOLoc in several outdoor areas, and the results have strongly
indicated the efficacy of our solution.

I. INTRODUCTION

Although WiFi has been intensively used for the purpose

of indoor localization since the seminal work [1], GPS is still

dominating the outdoor market. Nevertheless, the landscape of

outdoor (user) localization is shifting due to the high energy

consumption of embedded GPS sensors (in smartphones, for

example) and the frequent loss of signal in “urban canyon” [2],

[3]. Therefore, it is as imperative as indoor scenarios to

look for supplementary location indicators in metropolitan

areas. Whereas many location indicators, namely general RF

signal [3]–[5], light [6], sound [7], and magnetic field [8],

can be explored indoors, they either lose their location dis-

criminability (e.g., light, sound, and magnetic field) or offer

very low localization accuracy due to the sparse deployment of

signal sources (Cellular1 and FM). As a result, the pervasively

available WiFi infrastructure appears to a promising choice for

us to explore further.

While the majority of the research efforts are still dwelling

in indoor localization, quite a few industrial practices have

already started to provide GPS-free outdoor localization ser-

vices based on WiFi infrastructure [9]–[13]. These services

1CTrack [3], though based on GSM, achieves satisfactory vehicle trajectory
mapping by exploiting the trajectory continuity along a road, but this approach
may not work for general localization purpose.

are backed up by one fact: since one WiFi scan may discover

up to hundreds of WiFi hotspots in a common metropolitan

area, crowdsensing by a large number of smartphone users

has already labeled those hotspots without the need for war

driving. Consequently, even a small database in such a system

(e.g., OpenBMap [10]) may have thousands of WiFi hotspots

recorded for one metropolitan area, with each one getting

several hundreds of labels. If we can properly exploit such

“big data”, GPS-free localization in metropolitan area can be

made very accurate.

Unfortunately, neither academic proposals (e.g., [14], [15])

nor industrial practices (e.g., [10], [11]) have achieved a

satisfactory localization accuracy so far. Most academic pro-

posals are trying to migrate the WiFi fingerprinting methods

(e.g., [1]) proven to be effective indoors to a metropolitan

area, but fingerprinting such a huge area through war driving

is extremely difficult (if not impossible), and the localization

algorithms adapted to sequential war driving labels (e.g.,

particle filter [14]) do not work well for crowdsensed labels

possibly absent of sequential timestamps. More importantly,

localization does not work beyond the fingerprinted zones.

Some other academic proposals (e.g., [2]) along with most

industrial practices take a simpler approach that involves a

WiFi hotspot localization phase using the labels and a user

localization phase based on the estimated hotspot locations.

Whereas this method avoids the weakness of the fingerprinting

method and also delivers the WiFi hotspot locations as a

byproduct, it cannot achieve a good localization accuracy

because the synthesizing methods in the both phases (e.g.,

centroid [2], [10]) are over simplified and they process data

only in a localized (in topological sense) manner, so that

they i) may not handle the label errors well enough to avoid

error accumulation across the two phases, and ii) can cause a

significant information loss to hamper the crowdsensed labels

from fully contributing to the user localization.

In order to fully exert the strength of WiFi-based local-

ization outdoors, we propose an integrated solution, WOLoc,

to better utilize the crowdsensed WiFi labels for improving

the localization accuracy. Equipped with a large amount of

label data, WOLoc takes a holistic view on all such data

collected within a metropolitan area (or a sub-area) and it pro-

cesses the label based on semi-supervised manifold-learning

techniques. The rationale behind our design is the following:

assuming all labels are perfect (with each label produced



by a mobile device δ for a hotspot Θ containing a tuple

of {location of δ,RSSI from Θ to δ}), the locations of all

mobile devices and hotspots should lie on a low dimensional

Euclidean space (normally 2D or at most 3D). Although

imperfect labels (in terms of both location and RSSI) may

“bend” the original space into a much higher dimension, it is

highly possible that those locations still lie on some manifold

structure of low dimension [16]. Therefore, our design of

WOLoc aims to discover this manifold structure so as to

recover the true locations of the both users and WiFi hotspots.

In particular, we are making the following contributions:

• A pre-processing method to filter the labels so that

outliers that might significantly deviate from the ground

truth can be removed.

• A specifically designed manifold-learning scheme to

holistically synthesize all the filtered labels belonging to

a certain metropolitan area so as to locate both user (with

unknown locations) and all WiFi hotspots.

• An online localization approach to take only a small

subset of labels into account when processing location

queries so as to improve efficiency while preserving

localization accuracy.

• A full implementation and extensive experiments using it

in several metropolitan areas to validate the effectiveness

of our WOLoc system.

Note that WOLoc delivers hotspots positions as a byproduct;

this may not serve the purpose of user localization, but it pro-

vides guidance for users to look for better WiFi performance.

The remaining of the paper is organized as following. We

first survey the literature in Sec. II. Then we briefly discuss

the current practices in outdoor localization in Sec. III. Our

WOLoc system is presented in Sec. IV and is then evaluated

in Sec. V. We finally conclude our paper in Sec. VI.

II. RELATED WORKS

Whereas most user localization systems are designed for

indoor scenarios, GPS-free outdoor localization has a long

history under the topic of wireless sensor network (WSN)

localization but very few of them are dedicated to user

localization. Our following discussions categorize them into i)

range-based method and ii) range-free method, but omit recent

developments on (RF) Angle of Arrival (e.g., [17]), which is

clearly not suitable for outdoor scenarios.

A. Range-based Localization Method

Range-based methods normally require pairwise distance

measurements among all or part of the devices (or among var-

ious locations of the same device). The distance measurements

are normally obtained through ToF/ToA [18], [19], TDoA [20],

RSSI (with a certain propagation model) [21], and dead

reckoning [22]. Measuring distance through ToF/ToA/TDoA

requires either non-RF signal sources [18], [20] (so that the

time can last long enough to be measurable) or a sophisticated

design for RF signal [19] (which would not be usable for

outdoor localization any sooner). Dead reckoning is useful for

assisting user tracking in small scale indoor space [22] (other-

wise the accumulated errors can render the results unusable),

but locating a user in an metropolitan area cannot solely rely

on dead reckoning. As a result, the error prone RSSI model-

based ranging seems to be a reasonable solution. Nevertheless,

existing approaches handle these potentially very large errors

through a “brute-force” dimension reduction conducted by

minimizing the mean errors between the error-twisted high

dimensional structure and its 2D projection [18], [21]. The

approach of manifold-learning [16] can be deemed as an

implicit range-based method: it does not directly convert RSSI

readings into distances, but it rather considers those readings

as metrics in a certain manifold structure. This approach has

been applied to indoor tracking [23], but it is still an open

question whether it works for localization with crowdsensed

labels absent of sequential timestamps.

B. Range-Free Localization Method

Range-free methods have two different manifestations,

namely beacon-enabled methods for multi-hop networks [24]–

[26] and fingerprinting method for indoor localization [1],

[27]. The beacon-enabled methods only require a node/user

to hear from a few beacons with known locations, and then

use simple computations [24] or logical reasoning [25], [26]

to obtain a coarse-grained location estimation. Fingerprinting

method take RSSIs not as a distance indicator but rather

as an observed pattern [1], [27], so indicating locations by

pattern matching has the potential to achieve a fine-grained

localization if a certain area is fully labeled with the observable

patterns (or fingerprints). However, whereas certain efforts

have been made to migrate the fingerprinting methods from

indoor scenarios to outdoor environment [14], [15], it is now

well accepted that i) fingerprinting an area (even a very small

one) through war driving is a major bottleneck even for indoor

localization, and ii) the localization ability is confined to only

the region that has been fingerprinted. As a result, practical

deployments for outdoor localization are mainly using the

computationally light beacon-enabled methods by taking WiFi

hotspots as beacons [2], [10]. Nevertheless, as we shall show

in both Sec. III and Sec. V, the over-simplified method cannot

offer satisfactory localization accuracy due to the significant

loss of information.

III. CURRENT PRACTICES OF OUTDOOR GPS-FREE

LOCALIZATION

Most of current commercial or open-source WiFi localiza-

tion systems can be clearly divided into two stages: Hotspots

Localization (HL) and User Localization (UL), as illustrated

by Fig. 1. Hotspots localization is often regarded as the offline

pre-processing stage, where the locations of WiFi hotspots are

estimated based on crowdsensed labels collected and stored

in a database. These estimations stored in the database are

regularly updated as new labels become available. Among all

commercial platforms, WiGLE [9] and Skyhook [11] explicitly

claim to the use of weighted centroid method to estimate

hotspot locations based on the crowdsensed labels, whereas



Fig. 1. A two-stage localization approach: Hotspots Localization (Left) and
User Localization (Right). We mark known locations in black and estimated
locations in red. Hotspots Localization aims to locate hotspots (AP1 to AP5)
given several user locations (U1 to U4) along with corresponding hotspots
RSSIs. User Localization aims to estimate a new user’s (User X) location
based on previously estimated hotspots locations and their respective RSSIs.

we suspect others (e.g., [12]) apply similar approaches. In

particular, each label contains a GPS location indicating where

the concerned hotspot is heard, as well as the RSSI from

that hotspot indicating the receiver’s relative distance to the

hotspot. As a result, a hotspot location is estimated as the

centroid of all labels (their GPS locations) concerning it, but

weighted by the respective RSSIs.

User localization is regarded as the online localization stage,

when a user location is calculated based on the observed

hotspots whose positions have been estimated and stored at

the first stage, as well as their RSSI readings. The weighted

centroid method is again used in this stage, which is a reversed

process of getting the hotspots locations: the estimated hotspot

locations are used to compute the centroid that indicates

the user location, with RSSIs serving as the weights. Al-

though OpenBMap [10] claims to apply a Kalman Filter to

sequentially process the hotspot labels during this stage, this

seemingly more sophisticated method essentially yields the

same (unsatisfactory) localization accuracy, as we shall explain

soon and experimentally evaluate in Sec. V. Moreover, it is not

clear if the filtering process ever converges. Fig. 1 illustrates

how a two-stage approach works in an ideal case.

Although a two-stage approach may work in an ideal

case, it is prone to error accumulation across the two stages

because the information contained in the original labels do

not get fully propagated to the UL stage. Moreover, a two-

stage approach treats each estimation (in both stages) in a

localized manner, neglecting the spatial relationship among

hotspots and users; losing such information can be fatal to

the final location estimation result. In Fig. 2, we use a simple

example to compare the centroid-based method with the basic

idea of manifold learning. One main limitation of centroid-

based method in estimating a hotspot location is that it treats

the hotspot independently from other hotspots. Therefore,

no matter how RSSIs are factors as weights, the estimated

hotspot location is always inside the convex hull induced by

the observing user locations. As shown in Fig. 2 (left side),

when the collected data are mainly on the road, the weighted

Fig. 2. Comparing localization based on Weighted Centroid Method (Left)
and Manifold-based Learning (Right). The black star indicates the true
location of a hotspot while the red star is its estimated location.

centroid method also gives the estimated location of a hotspot

very close to the road. Apparently, such a large error may

seriously jeopardize the user localization later: if we simply

estimate a user requesting location (the mobile phone) as

within the red circle centered around the estimated hotspot

location, it can be seriously biased. In contrast, manifold

learning not only uses RSSI as distance metrics between user

and hotspots but also reconstructs the topological relations

among hotspots and users. As shown in Fig. 2 (right side),

the target hotspot (red star) is not estimated independently

but rather along with its surrounding hotspots (blue stars).

Obviously, constructing a manifold to represent the relations

among hotspots and users preserves the label information to

the maximum extent, hence it has the potential to obtain a

higher localization accuracy.

IV. WOLOC: A MANIFOLD PERSPECTIVE IN

LOCALIZATION

To overcome the potential problem inherent to the current

practices, we proposed WOLoc as an outdoor localization

system driven by manifold-based learning techniques. The

system architecture comprised of 3 parts is shown in Fig. 3:

pre-processing of crowdsensed data, offline manifold learning

based on existing labels, and online location query processing.

A. Pre-Processing of Crowdsensed Data

Many crowd-sensing applications available in the market

share a similar mechanism to obtain crowdsensing hotspot

Fig. 3. WOLoc system architecture.



location data. The application starts a hotspot discovery ac-

cording to various schedules (e.g., triggered by a significant

location change). It records, for each discovered hotspot,

the BSSID, SSID, RSSI. It also obtains its own location

(latitude, longitude) along with GPS signal statistics (accuracy,

represented by confidence range, and number of satellites), and

this location and the corresponding timestamp are associated

with every discovered hotspot. All these information for a

given hotspot constitute a label. A record contains a set of

labels collected by a user at a given time, and a log is consisted

of a sequence of records from the same user. Since a log

is recorded in real-time while the user is moving, any two

consecutive records in a log should be near enough to each

other. However, GPS signal sometimes gets lost or shifts a

lot in metropolitan area, so the first step of pre-processing

is to eliminate the records with significant shifts or errors in

locations. We firstly mark the records with very few number

of satellites or large confidence range as “suspicious records”.

Then we eliminate, out of these suspicious records, those with

huge jump in distance and velocity to avoid potential errors

caused by inaccurate GPS location.

Among all the detected hotspots, two types of mobile

hotspots should be eliminated: i) personal hotspots and public

transport hotspots. Normally, a fixed hotspot has a signal range

of about 100 meters, so we apply the DBSCAN clustering

algorithm on all label locations for each hotspot. Assume there

are k labels available for one hotspot, we set the minimum

points of cluster as 0.8k and the maximum distance as 200

meters. If all the points are finally labeled as “noise” after

DBSCAN, it means the heard locations for the hotspot are

too sparsely distributed, and the hotspot is highly likely to

be mobile. We maintain the database by keeping a record on

all the mobile hotspots discovered, and avoid using them in

following processing.

As we want to limit the size of the database to achieve

efficient computation in the following process, labels with

same locations are combined into one by averaging the RSSI

for each hotspot, where the “same” is defined as within 1

meter difference. The number of combined labels is recorded

for further combination. For any new label inserted into the

database, a same-location check/combination is performed to

minimize the size of the database.

B. Problem Formulation

After filtering processing, we can construct a signal matrix

S for all the remaining labels. Assume that we have n hotspots

detected in m records, S will be a m × n matrix, and

S =

⎡
⎢⎣
s11 · · · s1n

...
. . .

...

sm1 · · · smn

⎤
⎥⎦ where sij is the RSSI for the j-th

hotspot in the i-th record. Each column represents one hotspot,

and each row represents one record. We fill all the blank

cells with a small default value smin. Locations of records are

maintained using a m × 2 matrix u = [u1, · · · , um]′ where

ui = [uix, uiy]
′. Given the signal matrix S, our goal is, for

any new record sm+1 ∈ R
1×n, to estimate the user location

um+1. It turns out that, as a byproduct, we will obtain the

hotspot locations h = [h1, · · · , hn]
′ simultaneously, where

hi = [hix, hiy]
′.

C. Manifold Construction

The construction of manifold is based on three facts: i) two

near locations receive similar signal strengths from surround-

ing hotspots, ii) a user receives similar signal strength from

two hotspots near to each other, and iii) the nearer a user is to

a hotspot, the stronger the signal received will be [23]. In our

context, these translate to: i) if each row of S is represented

as a point in n-dimensional space, two locations, ui and uj ,

spatially near in real-world should be close to each other in

the n-dimensional space, ii) if each column of S is represented

as a point in m-dimensional space, two hotspots, hi and hj ,

spatially near in real-world should be close to each other in

the m-dimensional space, and iii) the larger sij is, the nearer

j-th hotspot is to the location of the i-th record.

Therefore, we construct two separated manifolds first: user

location manifold and hotspot location manifold, and the

neighbourhood relationship is given by k-Nearest-Neighbour

(KNN) method. Since the RSSI and distance is not linearly

related, we first convert the RSSI values to weights using

a non-linear transformation: s̃ij = exp

(
− (sij − smax)

2

2σ2

)
,

where smax is the maximum RSSI a user can receive in

an outdoor environment, which indicates a significantly close

distance between user and hotspot. σ is known as the Gaussian

kernel width. Empirically, we set smax = −30dBm and σ = 12

based on the crowdsensed data. Note that σ affects the spatial

density of hotspots: the larger the σ is, the more sparsely

hotspots are distributed. Given users’ geographic locations,

we directly use great-circle distance as the metric for user

location manifold. For hotspots location manifold, we use the

Euclidean distance between column vectors in S̃ as the metric.

For each manifold, we define a weighted adjacency matrices

A∗ where aij = exp

(
−‖s̃i − s̃j‖2

2σ2

)
if i and j are neighbours

in the manifold; otherwise 0. Let Au be the m×m matrix for

the user location manifold and Ah be the n×n matrix for the

hotspot location manifold. To align the two manifolds into one,

we define a unified adjacency matrix A =

[
ruAu rsS̃N

rsS̃
′
N rhAh

]

where parameters ru, rs, rh are set to be small positive values

induced by harmonic functions on the graph. A clearly repre-

sents the relative distances and connectivity among users and

hotspots based on the three aforementioned facts.

D. Offline Learning for Location Estimations

To solve the hotspot locations and unknown user locations

at one time, we apply a semi-supervised learning approach.

Given the relative locations of users and hotspots represented

by A, known locations denoted by y = [u′,h′]′, and indication

matrix K = diag(k1, . . . , km+n) where ki = 1 if the location

of user or hotspot is given in y, otherwise ki = 0, our

objective is to find a set of locations p best fit current relative



(a) 0.07 km2 (b) 0.14 km2 (c) 0.04 km2 (d) 0.07 km2 (e) 1.45 km2 (f) 1.27 km2

Fig. 4. Maps provided by Google Map for all areas concerned in our experiments. (a) Downtown. (b) Campus. (c) Hybrid Residential Area. (d) Residential
Blocks. (e) Community Area. (f) Downtown Entertainment Area.

patterns and has the minimum fitting errors compared to

known locations. Therefore, the objective is:

p∗ = argmin
p∈R(m+n)×2

(p− y)′K(p− y) + γp′Lp, (1)

where L is the graph Laplacian: L = D − A where

D = diag(d1, d2, . . . , dm+n) with di =
∑m+n

k=1 Aik. The

second term is the regularization term, where γ > 0 controls

the smoothness of the coordinates along the manifold. The

problem has a closed-form solution:

p∗ = (K + γL)−1Ky, (2)

where p∗ = [u∗′,h∗′]′ yields estimated locations for both

users and hotspots.

E. Online Location Query Processing

When processing the online location queries, involving

all records in a database (hence the full manifold) can be

avoided for efficiency purpose if the queries are geographically

confined in a small region. In the WOLoc system, the hotspot

manifold is constructed offline and stored in the database

during the offline process. Upon receiving a user location

query (i.e., a record with unknown location, su), WOLoc

server searches through the hotspots in the query record, and

retrieves a subset of relevant hotspots from the database. This

candidate set concerns all the hotspots in the query, as well

as their neighbouring hotspots in global hotspots manifold.

Then WOLoc selects a subset of records from database

to formulate
ˆ̃S along with the query record su; a record

is selected if it contains an RSSI value significant enough

for any hotspot in the candidate set. Âh is computed based

on
ˆ̃S and sub-manifold retrieved from the global hotspot

manifold computed offline. Based on the location û from

the selected records, WOLoc creates a user location manifold

online and inserts query record using KNN with Euclidean

distance between row vectors in
ˆ̃S as distance metrics, and

then computes Âu. After obtaining Âh and Âu, WOLoc server

applies the learning solver (2) to obtain the optimal solution

for these local structures and returns the queried location back

to the user. By processing a much smaller set of records,

the processing time is significantly reduced and WOLoc can

respond to the query in a more timely manner, as we shall

demonstrate in Sec. V-C.

V. SYSTEM EVALUATION

A. Experiment Setting

We conducted experiments in the following 6 outdoor areas:

• Downtown: central business district filled with commer-

cial and business buildings as shown in Fig. 4(a).

• Campus: educational institute district with buildings in

open area as shown in Fig. 4(b).

• Hybrid Residential Area (Hybrid R.A.): medium-

density residential neighborhood with a few shops and

a community center as shown in Fig. 4(c).

• Residential Blocks (R.B.): high-density residential

neighborhood filled with high-rises as shown in Fig. 4(d).

• Community Area (C.A.): mixture of residential high-

rises, private houses, markets, shopping malls and com-

munity centers as shown in Fig. 4(d).

• Downtown Entertainment Area (D.E.): high-density of

business high-rises, shopping malls, restaurants, and en-

tertainment facilities along riverside as shown in Fig. 4(f).

As the commercial platforms either do not open their

database [11], [12] or have very limited coverage in our

city [10], [13], we have to emulate the crowdsensing process

for the first 4 areas. We developed an Android application

to continuously detect user location using GPS and scan

surrounding WiFi hotspots at 1Hz. For each hotspots scan, we

record all the standard information as discussed in Sec. IV-A.

We collected 6 overlapped sets of data to cover each of the first

4 areas using different Android phones (HTC One, Mi phone,

Samsung). The last 2 larger areas are chosen as OpenBMap has

some coverage on them, which allows us to use OpenBMap

raw records uploaded from 2010 to 2016. The records from

OpenBMap’s online archive come from 26 traces of war-

driving data with different length and speed, and are hence

rather noisy. We heavily pre-process them using the methods

mentioned in Sec. IV-A. To supplement the OpenBMap’s

incomplete coverage, we further collect trace data through

cycling in order to cover these areas as much as possible.

We conducted 50 experiments for each area. For each

experiment, we first randomly selected 100 records with high

accuracy level (≤10 meters) and sufficient number of satellites

(≥8) as the testing set. The locations contained in these records

are treated as “ground truth” for the evaluation purpose; they

are temporarily removed from the records so that they can

emulate the location queries issued to WOLoc. We then use the

remaining records as the crowdsensed data set; they are used

by WOLoc to construct the manifolds. In total, we emulate
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Fig. 5. Hotspots density for all areas in our experiments.

TABLE I
HOTSPOTS DENSITY AND NUMBER OF HOTSPOTS PER RECORD

Area Hotspots
Density

(APs/km2)

# Hotspots per record

Mean Std.
Dev. Median

Downtown 30400 51.32 32.99 41
Campus 32900 88.42 36.08 91

Hybrid Residential Area 27300 32.17 6.95 31
Residential Blocks 29800 38.77 12.21 38
Community Area 18800 35.90 15.89 32

Downtown Entertainment 26100 48.21 31.14 41

5,000 location queries for each area, giving us sufficient data

to build statistics for every performance aspect of WOLoc.

We have a full-implementation for WOLoc server in Java on

a PC with 16GB RAM. For each area, the server first builds

up a database and constructs manifolds offline, then it accepts

location queries in JSON format and returns user locations.

B. Statistics on Hotspots

Fig. 5 shows the distribution of the number of hotspots

detected per record for each of the 6 areas. Table I shows

the statistics for hotspots per record for different areas. As

expected, downtown and campus have higher hotspot density

than residential zones, where the number of hotspots per

record can reach more than 100 in some areas. Downtown area

also has the high variance in number of hotspots per record as a

result of various height of buildings and unevenly distributed

buildings in the zone. Campus has generally more hotspots

detected per record and highest density, as the hotspots are

densely located to achieve high accessibility for all users in

the campus. Residential blocks have a bit denser hotspots

distribution as the blocks have more levels and more residents

compared with private semi-detached houses in hybrid resi-

dential area. Community area, as a larger scale of residential

area, share similar properties as hybrid residential area and

residential blocks. Most of records in this case contain about

15 to 45 hotspots. Downtown entertainment area has almost

the same distribution as downtown case, which shows not only

streets and pedestrian streets but also riverside streets have

sufficient hotspots equipped. However, the reported hotspots

density at the two large areas is lower than the first 4 areas

as we cannot cover the entire large space in details due to the

lack of manpower. In summary, nowadays metropolitan areas

have sufficient WiFi infrastructure to help outdoor localization

if we use them properly.

C. Time Efficiency of WOLoc Localization

Before evaluating the accuracy of WOLoc system for local-

ization, we first verify the system efficiency. WOLoc has two

separated processes, namely offline process and online process.

During the offline process, logs submitted to the server are pre-

processed and global manifolds are pre-computed in the server.

It only happens when there are a sufficient number of new

user logs received. An online process is invoked in response

to a user location query. This process involves local manifold

construction and location computation. Time to accomplish the

online process is the processing time for the server to return

location back to a user, so this is what we are evaluating

here. We plot the processing time as a function of number

of hotspots involved in the online processing in Fig. 6(a);

it is exponentially increased with both number of hotspots

and number of records. If we retrieve all the surrounding

hotspots concerned by a location query, 70% of the queries
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Fig. 6. Processing time using all hotspots in a query and their neighbouring
hotspots.
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Fig. 7. Error statistics as a function of number of candidate hotspots.

# of records / hotspots
100 101 102 103

Pr
oc

es
si

ng
 ti

m
e 

(s
)

0

0.2

0.4

0.6

0.8

1.0
Records
Hotspots

(a) Impact of # of hotspots/records.

Processing time (s)
0 0.2 0.4 0.6 0.8 1.0

%
 o

f q
ue

rie
s 

(%
)

0

10

20

30

40

50

(b) Processing time distribution.

Fig. 8. Processing time using only hotspots in a query.

in the experiment can be finished within 5 seconds as shown

in Fig. 6(b). The mean processing time is 4.22 seconds.

To further reduce the processing time, we test the perfor-

mance by involving only those hotspots in the query and even a

subset of it. We select the subset based on the RSSI value, and

we only take the hotspots with strong RSSI values for further

processing. Fig. 7 shows the accuracy when processing with

different number of hotspots. We observed that the location

accuracy is largely insensitive to this number as long as it

is sufficiently large (≥ 6). Fig. 8(a) and 8(b) show that, after

reducing the number of candidate hotspots, the processing time

can be reduced to 0.5s for most cases. The mean processing

time is 167.86ms with a standard deviation of 149.91ms.

Therefore, for the following experiments, we only take the

hotspots contained in a query as candidates. As it is impossible

to tell the processing time from the Internet delay for public

web services, we have to omit the comparison of processing

time at this stage.

D. Accuracy of User Localization

To evaluate the accuracy of WOLoc in user localization,

we firstly report the median error of the system at different

sampling rates, then we choose a given sampling rate to

evaluate WOLoc in the following tests. We also compare

WOLoc’s user localization accuracy against 3 open-source

or commercial systems available in the market: OpenBMap

Offline Localization System [10], Skyhook Precision Location

Service [11], and Google Location Service [28].

As we mentioned in Sec. V-A, we randomly select 100

records from our experiment data to emulate location queries,

and use the remaining records to emulate a database. Here

we re-sample the database with a varying sample rate, i.e.,
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Fig. 9. Performance analysis for different levels of hotspots label granularity.

one record for every N records with N = 1, 5, 10, 15. This

emulates a crowdsensing database at various granularity. The

median error at different sampling rate is shown in Fig. 9(a),

and the statistics on the distance between two consecutive

records in down-sampled database are reported in Fig. 9(b).

The median errors for N ≤ 10 are all below 10 meters, so all

the remaining experiments are conducted under N = 10. The

increase in median error for N = 15 suggests that the WiFi

labels may be too sparse for localization purposes.

In Fig. 10, we only report the results for 10 experiments

in each area due to space limit. WOLoc yields median error

less than 8 meters for all testing cases in first 4 areas (a)-

(d), as well as third quartile of errors all less than 15 meters.

Normally, an error less than 10 meters can be achieved if the

number of hotspots per record is high (e.g., in Campus case),

whereas large errors are often due to insufficient number of

hotspots in record (e.g., in Downtown case). For the last 2

larger areas, Community Area has a higher median of 15

meters compared with all other areas, and both Fig. 10(e)

and Fig. 10(f) have higher variances. These stem from the

low WiFi coverage given the much larger areas. Note that the

median errors yielded by WOLoc is quite comparable to the

accuracy level of GPS, which is about 3 to 7 meters if there

is a sufficient number of satellites.

To compare WOLoc with current available systems, we

issue the same location queries to the 3 systems mentioned

earlier. Though each of them has its own database, the open-

source nature of OpenBMap [10] allows us to compensate its

sparse WiFi labels: it has only about 5,000 hotspots available

in their database for the areas that we conduct the experiments.

So we add more hotspots labels from WiGLE [9] to enlarge

the database to over 25,000 hotspots. Skyhook [11] provides

a Python API for us to submit online location queries, but we

have no details about its database. A similar situation applies
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Fig. 10. Error in meters for estimating user location using WOLoc.

to Google Location Service [28], but it by default requires

GPS to achieve an accurate localization, though WiFi-based

localization is used to complement the GPS. To have a fair

comparison, we disable GPS when issuing queries to Google

in JSON format through Google Maps Geolocation API [28].

OpenBMap returns a location containing only latitude and

longitude, but both Skyhook and Google return a JSON

response, in which besides the estimated location, there is an

“accuracy indicator” of the estimated location represented as

the radius of a circle around the given location.

Fig. 11 shows a comparison between 4 different systems,

and it is very clear that WOLoc outperforms all of them.

Detailed error distributions are shown in Fig. 12 for all the

3 commercial systems with 10 test rounds for each of the

5 areas (1 area is omitted due to space limit). Generally, all

4 systems perform better in smaller areas (the first 4) than

larger areas (the last 2), but WOLoc significantly improves

the performance (in both statistics and distributions) compared

with others. It is a bit of a surprise that Google performs

worse than WOLoc, which is probably because that Google

relies too heavily on GPS localization without making a

lot of efforts in improving its localization algorithm using
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Fig. 11. Median error comparisons between WOLoc, OpenBMap, Skyhook
and Google for all 6 areas.

WiFi. Given the similar performance between Google and

OpenBMap, we suspect that Google most probably applies

similar algorithms to what OpenBMap claims to have used,

due to their simplicity to achieve high computation efficiency.

Skyhook’s performance has higher variance compared with the

other two; this may attribute to the lack of sufficient labels in

its self-maintained database for certain areas.

VI. CONCLUSION

We present in this paper WOLoc as a WiFi-only outdoor lo-

calization system that relies solely on crowdsensed hotspot la-

bels. We apply a semi-supervised manifold learning techniques

to estimate a queried location based on its connection to the

labeled manifold structure. We have conducted experiments

in 6 metropolitan areas, and our results show that WOLoc

yields localization errors between 5 to 15 meters for most

cases. This result is significantly better than 3 systems current

available in the market, namely OpenBMap, Skyhook, and

Google, in terms of WiFi-only outdoor localization, suggesting

its effectiveness in outdoor localization. We have also figured

out that the density of WiFi labels is a key, as WOLoc can

have a larger localization error if the label density is low.

Finally, the average processing time after our optimization

is less than 200ms, demonstrating WOLoc’s capability in

responding to realtime location queries. As public databases

with hotspot locations are still limited, we have not evaluated

the performance of WOLoc in areas where GPS actually fails.

Also, due to the lack of ground truth for hotspot locations

in our current experiments, we cannot report the accuracy for

hotspot localization that is a byproduct of WOLoc. Therefore,

we are planning to design better controlled experiments for

these evaluation purposes.
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